# Fluid Dynamics Part 2 Asymptotic Problems Of Fluid Dynamics

Fluid Dynamics book pdf is popular Fluid mechanics book. The writer of this outstanding book is Anatoly I. Ruban and released by Oxford University Press, USA on 2015. This book have total hardcover page 320. Download and read Fluid Dynamics book in pdf, epub and kindle directly from your devices.

- Author : Anatoly I. Ruban
- Release Date : 02 October 2022
- Publisher : Oxford University Press, USA
- Genre : Fluid mechanics
- Pages : 320
- ISBN 13 : 9780199681747

## Fluid Dynamics Book Summary

This is the second volume in a four-part series on fluid dynamics: Part 1. Classical Fluid Dynamics Part 2. Asymptotic Problems of Fluid Dynamics Part 3. Boundary Layers Part 4. Hydrodynamic Stability Theory The series is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. In Part 2 the reader is introduced to asymptotic methods, and their applications to fluid dynamics. Firstly, it discusses the mathematical aspects of the asymptotic theory. This is followed by an exposition of the results of inviscid flow theory, starting with subsonic flows past thin aerofoils. This includes unsteady flow theory and the analysis of separated flows. The authors then consider supersonic flow past a thin aerofoil, where the linear approximation leads to the Ackeret formula for the pressure. They also discuss the second order Buzemann approximation, and the flow behaviour at large distances from the aerofoil. Then the properties of transonic and hypersonic flows are examined in detail. Part 2 concludes with a discussion of viscous low-Reynolds-number flows. Two classical problems of the low-Reynolds-number flow theory are considered, the flow past a sphere and the flow past a circular cylinder. In both cases the flow analysis leads to a difficulty, known as Stokes paradox. The authors show that this paradox can be resolved using the formalism of matched asymptotic expansions.